Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Swiss Med Wkly ; 150: w20446, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-2273782

ABSTRACT

AIMS OF THE STUDY: Hydroxychloroquine and lopinavir/ritonavir have been used as experimental therapies to treat COVID-19 during the first wave of the pandemic. Randomised controlled trials have recently shown that there are no meaningful benefits of these two therapies in hospitalised patients. Uncertainty remains regarding the potential harmful impact of these therapies as very early treatments and their burden to the health care system. The present study investigated the length of hospital stay (LOS), mortality, and costs of hydroxychloroquine, lopinavir/ritonavir or their combination in comparison with standard of care among patients hospitalised for coronavirus disease 2019 (COVID-19). METHODS: This retrospective observational cohort study took place in the Geneva University Hospitals, Geneva, Switzerland (n = 840) between 26 February and 31 May 2020. Demographics, treatment regimens, comorbidities, the modified National Early Warning Score (mNEWS) on admission, and contraindications to COVID-19 treatment options were assessed. Outcomes included LOS, in-hospital mortality, and drug and LOS costs. RESULTS: After successful propensity score matching, patients treated with (1) hydroxychloroquine, (2) lopinavir/ritonavir or (3) their combination had on average 3.75 additional hospitalisation days (95% confidence interval [CI] 1.37–6.12, p = 0.002), 1.23 additional hospitalisation days (95% CI −1.24 – 3.51, p = 0.319), and 4.19 additional hospitalisation days (95% CI 1.52–5.31, p <0.001), respectively, compared with patients treated with the standard of care. Neither experimental therapy was significantly associated with mortality. These additional hospital days amounted to 1010.77 additional days for hydroxychloroquine and hydroxychloroquine combined with lopinavir/ritonavir, resulting in an additional cost of US$ 2,492,214 (95%CI US$ 916,839–3,450,619). CONCLUSIONS: Prescribing experimental therapies for COVID-19 was not associated with a reduced LOS and might have increased the pressure put on healthcare systems.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/epidemiology , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/mortality , Child , Child, Preschool , Comorbidity , Drug Combinations , Drug Therapy, Combination , Health Expenditures , Hospital Mortality/trends , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Infant , Length of Stay/statistics & numerical data , Lopinavir/administration & dosage , Lopinavir/adverse effects , Middle Aged , Pandemics , Retrospective Studies , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Socioeconomic Factors , Therapies, Investigational/methods , Young Adult
2.
Am J Transplant ; 20(7): 1849-1858, 2020 07.
Article in English | MEDLINE | ID: covidwho-2270901

ABSTRACT

The clinical characteristics, management, and outcome of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after solid organ transplant (SOT) remain unknown. We report our preliminary experience with 18 SOT (kidney [44.4%], liver [33.3%], and heart [22.2%]) recipients diagnosed with COVID-19 by March 23, 2020 at a tertiary-care center at Madrid. Median age at diagnosis was 71.0 ± 12.8 years, and the median interval since transplantation was 9.3 years. Fever (83.3%) and radiographic abnormalities in form of unilateral or bilateral/multifocal consolidations (72.2%) were the most common presentations. Lopinavir/ritonavir (usually associated with hydroxychloroquine) was used in 50.0% of patients and had to be prematurely discontinued in 2 of them. Other antiviral regimens included hydroxychloroquine monotherapy (27.8%) and interferon-ß (16.7%). As of April 4, the case-fatality rate was 27.8% (5/18). After a median follow-up of 18 days from symptom onset, 30.8% (4/13) of survivors developed progressive respiratory failure, 7.7% (1/13) showed stable clinical condition or improvement, and 61.5% (8/13) had been discharged home. C-reactive protein levels at various points were significantly higher among recipients who experienced unfavorable outcome. In conclusion, this frontline report suggests that SARS-CoV-2 infection has a severe course in SOT recipients.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Organ Transplantation , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Transplant Recipients , Aged , Antiviral Agents/administration & dosage , Betacoronavirus , COVID-19 , Drug Combinations , Female , Fever , Humans , Hydroxychloroquine/administration & dosage , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/adverse effects , Interferon-beta/administration & dosage , Lopinavir/administration & dosage , Male , Middle Aged , Pandemics , Radiography, Thoracic , Retrospective Studies , Ritonavir/administration & dosage , SARS-CoV-2 , Spain/epidemiology
3.
N Engl J Med ; 388(5): 406-417, 2023 02 02.
Article in English | MEDLINE | ID: covidwho-2186510

ABSTRACT

BACKGROUND: Nirmatrelvir-ritonavir has been authorized for emergency use by many countries for the treatment of coronavirus disease 2019 (Covid-19). However, the supply falls short of the global demand, which creates a need for more options. VV116 is an oral antiviral agent with potent activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We conducted a phase 3, noninferiority, observer-blinded, randomized trial during the outbreak caused by the B.1.1.529 (omicron) variant of SARS-CoV-2. Symptomatic adults with mild-to-moderate Covid-19 with a high risk of progression were assigned to receive a 5-day course of either VV116 or nirmatrelvir-ritonavir. The primary end point was the time to sustained clinical recovery through day 28. Sustained clinical recovery was defined as the alleviation of all Covid-19-related target symptoms to a total score of 0 or 1 for the sum of each symptom (on a scale from 0 to 3, with higher scores indicating greater severity; total scores on the 11-item scale range from 0 to 33) for 2 consecutive days. A lower boundary of the two-sided 95% confidence interval for the hazard ratio of more than 0.8 was considered to indicate noninferiority (with a hazard ratio of >1 indicating a shorter time to sustained clinical recovery with VV116 than with nirmatrelvir-ritonavir). RESULTS: A total of 822 participants underwent randomization, and 771 received VV116 (384 participants) or nirmatrelvir-ritonavir (387 participants). The noninferiority of VV116 to nirmatrelvir-ritonavir with respect to the time to sustained clinical recovery was established in the primary analysis (hazard ratio, 1.17; 95% confidence interval [CI], 1.01 to 1.35) and was maintained in the final analysis (median, 4 days with VV116 and 5 days with nirmatrelvir-ritonavir; hazard ratio, 1.17; 95% CI, 1.02 to 1.36). In the final analysis, the time to sustained symptom resolution (score of 0 for each of the 11 Covid-19-related target symptoms for 2 consecutive days) and to a first negative SARS-CoV-2 test did not differ substantially between the two groups. No participants in either group had died or had had progression to severe Covid-19 by day 28. The incidence of adverse events was lower in the VV116 group than in the nirmatrelvir-ritonavir group (67.4% vs. 77.3%). CONCLUSIONS: Among adults with mild-to-moderate Covid-19 who were at risk for progression, VV116 was noninferior to nirmatrelvir-ritonavir with respect to the time to sustained clinical recovery, with fewer safety concerns. (Funded by Vigonvita Life Sciences and others; ClinicalTrials.gov number, NCT05341609; Chinese Clinical Trial Registry number, ChiCTR2200057856.).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Adult , Humans , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , COVID-19 Drug Treatment/methods , Ritonavir/administration & dosage , Ritonavir/adverse effects , Ritonavir/therapeutic use , SARS-CoV-2 , Administration, Oral , Single-Blind Method , Disease Progression
5.
J Laryngol Otol ; 135(9): 755-758, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1747302

ABSTRACT

BACKGROUND: There are significant drug-drug interactions between human immunodeficiency virus antiretroviral therapy and intranasal steroids, leading to high serum concentrations of iatrogenic steroids and subsequently Cushing's syndrome. METHOD: All articles in the literature on cases of intranasal steroid and antiretroviral therapy interactions were reviewed. Full-length manuscripts were analysed and the relevant data were extracted. RESULTS: A literature search and further cross-referencing yielded a total of seven reports on drug-drug interactions of intranasal corticosteroids and human immunodeficiency virus protease inhibitors, published between 1999 and 2019. CONCLUSION: The use of potent steroids metabolised via CYP3A4, such as fluticasone and budesonide, are not recommended for patients taking ritonavir or cobicistat. Mometasone should be used cautiously with ritonavir because of pharmacokinetic similarities to fluticasone. There was a delayed onset of symptoms in many cases, most likely due to the relatively lower systemic bioavailability of intranasal fluticasone.


Subject(s)
Adrenal Cortex Hormones/adverse effects , Cushing Syndrome/chemically induced , HIV Infections/drug therapy , HIV Protease Inhibitors/adverse effects , HIV , Administration, Intranasal , Adrenal Cortex Hormones/administration & dosage , Adult , Cobicistat/administration & dosage , Cobicistat/adverse effects , Drug Interactions , Fluticasone/administration & dosage , Fluticasone/adverse effects , HIV Protease Inhibitors/administration & dosage , Humans , Male , Ritonavir/administration & dosage , Ritonavir/adverse effects
6.
N Engl J Med ; 386(15): 1397-1408, 2022 04 14.
Article in English | MEDLINE | ID: covidwho-1692474

ABSTRACT

BACKGROUND: Nirmatrelvir is an orally administered severe acute respiratory syndrome coronavirus 2 main protease (Mpro) inhibitor with potent pan-human-coronavirus activity in vitro. METHODS: We conducted a phase 2-3 double-blind, randomized, controlled trial in which symptomatic, unvaccinated, nonhospitalized adults at high risk for progression to severe coronavirus disease 2019 (Covid-19) were assigned in a 1:1 ratio to receive either 300 mg of nirmatrelvir plus 100 mg of ritonavir (a pharmacokinetic enhancer) or placebo every 12 hours for 5 days. Covid-19-related hospitalization or death from any cause through day 28, viral load, and safety were evaluated. RESULTS: A total of 2246 patients underwent randomization; 1120 patients received nirmatrelvir plus ritonavir (nirmatrelvir group) and 1126 received placebo (placebo group). In the planned interim analysis of patients treated within 3 days after symptom onset (modified intention-to treat population, comprising 774 of the 1361 patients in the full analysis population), the incidence of Covid-19-related hospitalization or death by day 28 was lower in the nirmatrelvir group than in the placebo group by 6.32 percentage points (95% confidence interval [CI], -9.04 to -3.59; P<0.001; relative risk reduction, 89.1%); the incidence was 0.77% (3 of 389 patients) in the nirmatrelvir group, with 0 deaths, as compared with 7.01% (27 of 385 patients) in the placebo group, with 7 deaths. Efficacy was maintained in the final analysis involving the 1379 patients in the modified intention-to-treat population, with a difference of -5.81 percentage points (95% CI, -7.78 to -3.84; P<0.001; relative risk reduction, 88.9%). All 13 deaths occurred in the placebo group. The viral load was lower with nirmatrelvir plus ritonavir than with placebo at day 5 of treatment, with an adjusted mean difference of -0.868 log10 copies per milliliter when treatment was initiated within 3 days after the onset of symptoms. The incidence of adverse events that emerged during the treatment period was similar in the two groups (any adverse event, 22.6% with nirmatrelvir plus ritonavir vs. 23.9% with placebo; serious adverse events, 1.6% vs. 6.6%; and adverse events leading to discontinuation of the drugs or placebo, 2.1% vs. 4.2%). Dysgeusia (5.6% vs. 0.3%) and diarrhea (3.1% vs. 1.6%) occurred more frequently with nirmatrelvir plus ritonavir than with placebo. CONCLUSIONS: Treatment of symptomatic Covid-19 with nirmatrelvir plus ritonavir resulted in a risk of progression to severe Covid-19 that was 89% lower than the risk with placebo, without evident safety concerns. (Supported by Pfizer; ClinicalTrials.gov number, NCT04960202.).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Lactams , Leucine , Nitriles , Proline , Ritonavir , Administration, Oral , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Disease Progression , Double-Blind Method , Hospitalization , Humans , Lactams/administration & dosage , Lactams/adverse effects , Lactams/therapeutic use , Leucine/administration & dosage , Leucine/adverse effects , Leucine/therapeutic use , Nitriles/administration & dosage , Nitriles/adverse effects , Nitriles/therapeutic use , Proline/administration & dosage , Proline/adverse effects , Proline/therapeutic use , Ritonavir/administration & dosage , Ritonavir/adverse effects , Ritonavir/therapeutic use , SARS-CoV-2 , Treatment Outcome , Vaccination , Viral Load/drug effects , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/adverse effects , Viral Protease Inhibitors/therapeutic use
7.
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1666355

ABSTRACT

The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.


Subject(s)
COVID-19 Drug Treatment , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
8.
Nature ; 601(7894): 496, 2022 01.
Article in English | MEDLINE | ID: covidwho-1641925

Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Drug Development/trends , Drug Resistance, Viral , Research Personnel , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Administration, Oral , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/supply & distribution , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/supply & distribution , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Cytidine/therapeutic use , Drug Approval , Drug Combinations , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Drug Therapy, Combination , Hospitalization/statistics & numerical data , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Hydroxylamines/therapeutic use , Lactams/administration & dosage , Lactams/pharmacology , Lactams/therapeutic use , Leucine/administration & dosage , Leucine/pharmacology , Leucine/therapeutic use , Medication Adherence , Molecular Targeted Therapy , Mutagenesis , Nitriles/administration & dosage , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/administration & dosage , Proline/pharmacology , Proline/therapeutic use , Public-Private Sector Partnerships/economics , Ritonavir/administration & dosage , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/enzymology , SARS-CoV-2/genetics
10.
J Med Virol ; 93(12): 6557-6565, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544300

ABSTRACT

The purpose of this study was to compare the effectiveness of Atazanavir/Ritonavir/Dolutegravir/Hydroxychloroquine and Lopinavir/Ritonavir/Hydroxychloroquine treatment regimens in COVID-19 patients based on clinical and laboratory parameters. We prospectively evaluated the clinical and laboratory outcomes of 62 moderate to severe COVID-19 patients during a 10-day treatment plan. Patients were randomly assigned to either KH (receiving Lopinavir/Ritonavir [Kaletra] plus Hydroxychloroquine) or ADH (receiving Atazanavir/Ritonavir, Dolutegravir, and Hydroxychloroquine) groups. During this period, clinical and laboratory parameters and outcomes such as intensive care unit (ICU) admission or mortality rate were recorded. Compared to the KH group, after the treatment period, patients in the ADH group had higher activated partial thromboplastin time (aPTT) (12, [95% confidence interval [CI]: 6.97, 17.06), p = <0.01), international normalized ratio (INR) (0.17, [95% CI: 0.07, 0.27), p = <0.01) and lower C-reactive protein (CRP) (-14.29, (95% CI: -26.87, -1.71), p = 0.03) and potassium (-0.53, (95% CI: -1.03, -0.03), p = 0.04) values. Moreover, a higher number of patients in the KH group needed invasive ventilation (6 (20%) vs. 1 (3.1%), p = 0.05) and antibiotic administration (27 (90%) vs. 21(65.6), p = 0.02) during hospitalization while patients in the ADH group needed more corticosteroid administration (9 (28.1%) vs. 2 (6.7%), p = 0.03). There was no difference in mortality rate, ICU admission rate, and hospitalization period between the study groups. Our results suggest that the Atazanavir/Dolutegravir treatment regimen may result in a less severe disease course compared to the Lopinavir/Ritonavir treatment regimen and can be considered as an alternative treatment option beside standard care. However, to confirm our results, larger-scale studies are recommended.


Subject(s)
Antiviral Agents/therapeutic use , Atazanavir Sulfate/therapeutic use , COVID-19 Drug Treatment , Heterocyclic Compounds, 3-Ring/therapeutic use , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Oxazines/therapeutic use , Piperazines/therapeutic use , Pyridones/therapeutic use , Ritonavir/therapeutic use , Antiviral Agents/administration & dosage , Atazanavir Sulfate/administration & dosage , COVID-19/pathology , Drug Combinations , Drug Therapy, Combination , Female , Heterocyclic Compounds, 3-Ring/administration & dosage , Humans , Hydroxychloroquine/administration & dosage , Lopinavir/administration & dosage , Male , Middle Aged , Oxazines/administration & dosage , Piperazines/administration & dosage , Pyridones/administration & dosage , Ritonavir/administration & dosage , Treatment Outcome
11.
Inflamm Res ; 71(1): 39-56, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525531

ABSTRACT

The COVID-19 pandemic created a worldwide debilitating health crisis with the entire humanity suffering from the deleterious effects associated with the high infectivity and mortality rates. While significant evidence is currently available online and targets various aspects of the disease, both inflammatory and noninflammatory kidney manifestations secondary to COVID-19 infection are still largely underrepresented. In this review, we summarized current knowledge about COVID-19-related kidney manifestations, their pathologic mechanisms as well as various pharmacotherapies used to treat patients with COVID-19. We also shed light on the effect of these medications on kidney functions that can further enhance renal damage secondary to the illness.


Subject(s)
COVID-19 Drug Treatment , COVID-19/physiopathology , Kidney Diseases/physiopathology , Kidney/injuries , Acute Kidney Injury/complications , Aldosterone/metabolism , Angiotensins/chemistry , Antibodies, Monoclonal, Humanized/administration & dosage , Autopsy , Biopsy , COVID-19/complications , COVID-19 Vaccines , Dexamethasone/administration & dosage , Enoxaparin/administration & dosage , Heparin/administration & dosage , Heparin, Low-Molecular-Weight/administration & dosage , Humans , Inflammation , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Kidney Diseases/complications , Kidney Transplantation , Lopinavir/administration & dosage , Pandemics , Renal Replacement Therapy , Renin-Angiotensin System , Ritonavir/administration & dosage , SARS-CoV-2
12.
Ann Intern Med ; 174(1): JC3, 2021 01.
Article in English | MEDLINE | ID: covidwho-1518748

ABSTRACT

SOURCE CITATION: RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2020;396:1345-52. 33031764.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Hospitalization , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Administration, Oral , Aged , Antiviral Agents/administration & dosage , COVID-19/mortality , Drug Combinations , Female , Humans , Lopinavir/administration & dosage , Male , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , SARS-CoV-2 , United Kingdom
13.
Mayo Clin Proc ; 95(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: covidwho-1450185

ABSTRACT

As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the "off-label" repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world's population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.


Subject(s)
Death, Sudden, Cardiac , Hydroxychloroquine , Long QT Syndrome , Lopinavir , Risk Adjustment/methods , Ritonavir , Torsades de Pointes , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Drug Combinations , Drug Monitoring/methods , Drug Repositioning/ethics , Drug Repositioning/methods , Electrocardiography/methods , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Lopinavir/administration & dosage , Lopinavir/adverse effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/mortality , Torsades de Pointes/therapy
14.
Pharmacotherapy ; 40(5): 416-437, 2020 05.
Article in English | MEDLINE | ID: covidwho-1449937

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into an emergent global pandemic. Coronavirus disease 2019 (COVID-19) can manifest on a spectrum of illness from mild disease to severe respiratory failure requiring intensive care unit admission. As the incidence continues to rise at a rapid pace, critical care teams are faced with challenging treatment decisions. There is currently no widely accepted standard of care in the pharmacologic management of patients with COVID-19. Urgent identification of potential treatment strategies is a priority. Therapies include novel agents available in clinical trials or through compassionate use, and other drugs, repurposed antiviral and immunomodulating therapies. Many have demonstrated in vitro or in vivo potential against other viruses that are similar to SARS-CoV-2. Critically ill patients with COVID-19 have additional considerations related to adjustments for organ impairment and renal replacement therapies, complex lists of concurrent medications, limitations with drug administration and compatibility, and unique toxicities that should be evaluated when utilizing these therapies. The purpose of this review is to summarize practical considerations for pharmacotherapy in patients with COVID-19, with the intent of serving as a resource for health care providers at the forefront of clinical care during this pandemic.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Coronavirus Infections/drug therapy , Immunomodulation , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones , Alanine/administration & dosage , Alanine/adverse effects , Alanine/analogs & derivatives , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Azetidines/administration & dosage , Azetidines/adverse effects , Betacoronavirus , COVID-19 , Chloroquine/administration & dosage , Chloroquine/adverse effects , Coronavirus Infections/therapy , Drug Combinations , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Immunization, Passive , Interferon-alpha/administration & dosage , Interferon-alpha/adverse effects , Lopinavir/administration & dosage , Lopinavir/adverse effects , Nelfinavir/administration & dosage , Nelfinavir/adverse effects , Nitro Compounds , Pandemics , Purines , Pyrazoles , Ribavirin/administration & dosage , Ribavirin/adverse effects , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Thiazoles/administration & dosage , Thiazoles/adverse effects , COVID-19 Drug Treatment , COVID-19 Serotherapy
15.
Int Immunopharmacol ; 95: 107522, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1385749

ABSTRACT

BACKGROUND: We examined the safety and efficacy of a treatment protocol containing Favipiravir for the treatment of SARS-CoV-2. METHODS: We did a multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. Patients with typical ground glass appearance on chest computerized tomography scan (CT scan) and oxygen saturation (SpO2) of less than 93% were enrolled. They were randomly allocated into Favipiravir (1.6 gr loading, 1.8 gr daily) and Lopinavir/Ritonavir (800/200 mg daily) treatment regimens in addition to standard care. In-hospital mortality, ICU admission, intubation, time to clinical recovery, changes in daily SpO2 after 5 min discontinuation of supplemental oxygen, and length of hospital stay were quantified and compared in the two groups. RESULTS: 380 patients were randomly allocated into Favipiravir (193) and Lopinavir/Ritonavir (187) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days [SD = 6] in the Favipiravir and 8.1 [SD = 6.5] days in Lopinavir/Ritonavir groups) (p = 0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR = 0.94, 95% CI 0.75 - 1.17) and likewise the changes in the daily SpO2 after discontinuation of supplemental oxygen (p = 0.46) CONCLUSION: Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or In-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay.


Subject(s)
Amides/administration & dosage , Amides/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Pyrazines/administration & dosage , Pyrazines/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Drug Therapy, Combination , Female , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Intubation , Kaplan-Meier Estimate , Length of Stay , Lopinavir/administration & dosage , Lopinavir/adverse effects , Male , Middle Aged , Oxygen/blood , Ritonavir/administration & dosage , Ritonavir/adverse effects , Severity of Illness Index , Treatment Outcome , Young Adult
16.
J Clin Lab Anal ; 35(9): e23923, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1353465

ABSTRACT

BACKGROUND: The dynamic alteration and comparative study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA shedding pattern during treatment are limited. This study explores the potential risk factors influencing prolonged viral shedding in COVID-19. METHODS: A total of 126 COVID-19 patients were enrolled in this retrospective longitudinal study. A multivariate logistic regression analysis was carried out to estimate the potential risk factors. RESULTS: 38.1% (48/126) cases presented prolonged respiratory tract viral shedding, and 30 (23.8%) cases presented prolonged rectal swab viral shedding. Obesity (OR, 3.31; 95% CI, 1.08-10.09), positive rectal swab (OR, 3.43; 95% CI, 1.53-7.7), treatment by lopinavir/ritonavir with chloroquine phosphate (OR, 2.5; 95% CI, 1.04-6.03), the interval from onset to antiviral treatment more than 7 days (OR, 2.26; 95% CI, 1.04-4.93), lower CD4+ T cell (OR, 0.92; 95% CI, 0.86-0.99) and higher NK cells (OR, 1.11; 95% CI, 1.02-1.20) were significantly associated with prolonged respiratory tract viral shedding. CD3-CD56+ NK cells (OR, 0.87; 95% CI, 0.76-0.99) were related with prolonged fecal shedding. CONCLUSIONS: Obesity, delayed antiviral treatment, and positive SARS-CoV-2 for stool were independent risk factors for prolonged SARS-CoV-2 RNA shedding of the respiratory tract. A combination of LPV/r and abidol as the initial antiviral regimen was effective in shortening the duration of viral shedding compared with LPV/r combined with chloroquine phosphate. CD4+ T cell and NK cells were significantly associated with prolonged viral shedding, and further studies are to be warranted to determine the mechanism of immunomodulatory response in virus clearance.


Subject(s)
COVID-19/virology , Feces/virology , SARS-CoV-2/physiology , Virus Shedding/physiology , Adult , Animals , Antiviral Agents/administration & dosage , CD4 Lymphocyte Count , COVID-19/epidemiology , Chloroquine/administration & dosage , Chloroquine/adverse effects , Chloroquine/analogs & derivatives , Female , Humans , Killer Cells, Natural , Longitudinal Studies , Lopinavir/administration & dosage , Lynx , Male , Obesity/epidemiology , Respiratory System/virology , Retrospective Studies , Risk Factors , Ritonavir/administration & dosage , Time Factors , Virus Shedding/drug effects
19.
J Zhejiang Univ Sci B ; 22(7): 599-602, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1315902

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occasioned worldwide alarm. Globally, the number of reported confirmed cases has exceeded 84.3 million as of this writing (January 2, 2021). Since there are no targeted therapies for COVID-19, the current focus is the repurposing of drugs approved for other uses. In some clinical trials, antiviral drugs such as remdesivir (Grein et al., 2020), lopinavir/ritonavir (LPV/r) (Cao et al., 2020), chloroquine (Gao et al., 2020), hydroxychloroquine (Gautret et al., 2020), arbidol (Wang et al., 2020), and favipiravir (Cai et al., 2020b) have shown efficacy in COVID-19 patients. LPV/r combined with arbidol, which is the basic regimen in some regional hospitals in China including Zhejiiang Province, has shown antiviral effects in COVID-19 patients (Guo et al., 2020; Xu et al., 2020). A retrospective cohort study also reported that this combination therapy showed better efficacy than LPV/r alone for the treatment of COVID-19 patients (Deng et al., 2020).


Subject(s)
COVID-19 Drug Treatment , Indoles/administration & dosage , Lopinavir/administration & dosage , Ritonavir/administration & dosage , SARS-CoV-2 , Animals , Drug Interactions , Drug Therapy, Combination , Female , Indoles/pharmacokinetics , Lopinavir/pharmacokinetics , Male , Rats , Retrospective Studies , Ritonavir/pharmacokinetics
20.
Antivir Ther ; 25(4): 233-239, 2020.
Article in English | MEDLINE | ID: covidwho-1256707

ABSTRACT

Since the outbreak of coronavirus disease (COVID-19) that was discovered in 2019 in Wuhan, China, no standard therapy guideline has been set despite the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its high infectivity. The globally pandemic outbreak suggests that COVID-19 is highly infectious and difficult to control. A dual-combination of ribavirin and interferon-α has been the widely used regimen for the treatment of this disease in China. However, due to the varying results of treatment with these drugs, a novel antiviral combination therapy is urgently needed. This case reports the usage of lopinavir/ritonavir-based combination antiviral regimen for a patient with SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , SARS-CoV-2 , Adult , Drug Therapy, Combination , Humans , Indoles/administration & dosage , Indoles/adverse effects , Interferon-alpha/administration & dosage , Interferon-alpha/adverse effects , Lopinavir/administration & dosage , Lopinavir/adverse effects , Male , Ritonavir/administration & dosage , Ritonavir/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL